IVth International Symposium Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2007)

H-Bonding Parametrization in Quantitative Structure–Activity Relationships and Drug Design (Plenar lecture)

Oleg Raevsky

Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia

H-bond Functional Groups in Biological Molecules

_			Most common H	H-bonds in biological molecules
Donors	Acceptors	N-	—НО—С	Amino acids, zwitterions, proteins
	_	0-	—НО—С	Carboxyl acids, acid nitrates
0—н	0—-P	Н	0—C—O	Peptides, proteins, nucleosides
N	0—C	N-	−н0==С	Nucleotides, nucleic acids
ΝΠ	O—S	0-	—НО——Н	Hydrates
N ⁺			Н	
N—H		0-	-HOC	Carbohydrates
	S = C	0-	—нО_С	
S—H				
		0-	$-H \cdots N \stackrel{\sim}{=} C$	
С—Н	N	N-	$-H \cdots N \equiv C$	Proteins, nucleosides,
			C	nucleotides, nucleic acids
		0- N-	—HО—Р —HО	
Р—-Н			G.A.Jeffard, W.S	Saenger. "H-bonding in Biological

G.A.Jeffard, W.Saenger. "H-bonding in Biological Structures", 1991, Berlin: Springer DNA and proteins are held together in their defined three-dimensional structures primarily by hydrogen bonds. The double helix of DNA and RNA structures, the peptide and protein secondary structures like α -helices, β -sheets, β - and γ -loops, and the tertiary structures of proteins are formed by H-bonds (enthalpy contributions) and by hydrophobic contacts (primarily entropy cotribution).

H-bonding in DNA Replication Process

DNA

Right Recognition Probability = 10⁷

L.Pauling, P.Pauling. Chemistry, 1975/ Freeman and C., San Francisco

- "Despite of all attempts to arrive at a better understanding of the role of water and of hydrogen bonds in biological systems and of all the individual enthalpy and entropy terms that are involved in disolvation, hydrogen-bond formation, and hydrophobic interactions we are far from a satisfactory situation".
- Kubinyi, <u>Hydrogen Bonding, the Last Mystery in Drug Design.</u> in:*Pharmacokinetic Optimization in Drug Research. Biological, Physicochemical, and Computational Strategies,* B. Testa, H. van de Waterbeemd, G. Folkers and R. Guy, Eds., Helvetica Chimica Acta and Wiley-VCH, Zürich, **2001**, 513-524.

2D Indirect and Indicator H-bonding Descriptors

Name or meaning	Туре	Symbol	Author(s)		
The difference between octanol-water and cyclohexane- water logP values	Indirect	IH	P.Seiler (1974)		
The difference logP octanol-water for polar and nonpolar chemicals with the same molecular weight	indirect	EW	I. Moriguchi (1982)		
The atomic charge on the hydrogen atom	indirect	QH	L.YWilson		
The energy of the lowest unoccupied molecular orbital	indirect	ELUMO	G.R .Famini (1991)		
The electron donor superdelocalizability	indirect	DE			
The self-atom polarizability	Indirect	PE	J.C.Dearden (1997) E.Gancia		
The charge on the most negatively charge atom	indirect	QMH			
The energy of the highest occupied molecular orbital	indirect	ЕНОМО	(2001)		
Surface electrostatic potential maxima	indirect	Vs,max	J.S.Murray		
Electrostatic potential minima	indirect	Vmin	(1992)		
Numbers of O and N Types and numbers of H-bonds The sum of OHs and NHs (donors), the sum of Ns and Os (acceptors)	Indicator Indicator indicator	Na, Nd	Fujita (1977) Charton (1982) C.Lipinski (1997)		

O.A.Raevsky. In *Molecular Drug Properties. Measurement and Prediction*. R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

Thermodynamics of H-bond Complexation

$\Delta G = -RTIn K = \Delta H - T\Delta S$

Where ∆H is a change in enthalpy;
∆G is a change in free energy;
∆S is a change in entropy;
K is a binding constant ;
T is an absolute temperature (in Kelvin).
R is the universal gas constant.

Binding constants of H-bond complexes, ΔH or (and) ΔG are normally used to create thermodynamic hydrogen bond scales.

2D Direct Thermodynamics H-bonding Descriptors

Name or meaning	Туре	Symbol	Author(s)
Infrared or NMR Spectral Shifts	thermodynamic	ΔνΟΗ, δ Η	M.K.Kroger R.S.Drago A.Joganssen (1970 ths)
Parameter of acidity	thermodynamic	Α	R.W.Taft, M. L.Kamlet
Parameter of basicity	thermodynamic	В	M.Abraham (1980 ths)
H-bond acceptor enthalpy and free energy factors	thermodynamic	Ea , Ca	O.A.Raevsky (1980 ths)

O.A.Raevsky. In *Molecular Drug Properties. Measurement and Prediction*. R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

Enthalpy and Free Energy H-bond Factors

 Δ H = 4.96 (kJ/mole) $E_a E_d$ Δ G = 2.43 (kJ/mole) $C_a C_d$ + 5.70 (kJ/mole)

 E_a is H-bond acceptor enthalpy factor E_d is H-bond donor enthalpy factor C_a is H-bond acceptor free energy factor C_d is H-bond donor free energy factor

 $\Delta H_{calc} = -0.27(\pm 0.45) + 1.00(\pm 0.02) \Delta H_{exp}$ n = 936, r2 = 0.91, s = 2.70, F = 9553

 $\Delta G_{calc} = -0.07(\pm 0.12) + 1.00(\pm 0.01) \Delta G_{exp}$ n=936, r2=0.97, s=1.11, F=28556

Raevsky, O.A., Grigor'ev, V.Ju., Kireev, D., Zefirov, N.S. Complete Thermodynamic Description of H-Bonding in the Framework of Multiplicative Approach. *Quant. Struct.-Act. Relat.*, **1992**, .11 49-64.

FREE ENERGY H-BOND FACTOR SCALE

H-bond donors

H-bond acceptors

Raevsky, O.A., Grigor'ev, V.Ju., Solov'ev, V.P., Kireev, D.B., Sapegin, A.M., Zefirov, N.S. Drug Design H-Bonding Scale. In *QSAR: Rational Approaches in the Design of Bioactive Compounds*. Silipo, C., Vittoria, A. (eds.), Elsevier, Amsterdam, **1991**.

The Common Scheme of HYBOT Program Package

Raevsky, O.A. Hydrogen Bond Strength Estimation by means of HYBOT. In *Computer-Assisted Lead Finding and Optimization*. Van de Waterbeemd, H., Testa, B., Folkers, G. (eds.), Basel: Verlag, Basel, **1997**.

Predicted QSAR Descriptors for Set of Structures in HYBOT-PLUS-2006/CHED

X	Microsoft Ex	cel - Solid.xls:	3											_ 8 ×	-
) 😅 🖬 🤞	🗟 💐 👌	<u>қ</u> 🖻 🖡	l 🝼 🖍	👻 Cal 👻 🔮	L 😤 🛛	Σ <i>f</i> *	IR IA FA FR	۱ 🔮	2 😽 🛛	100% 🝷	2			
12) <u>Ф</u> айл <u>П</u> ра	вка <u>В</u> ид Вст <u>а</u>	<u>а</u> вка Фо	р <u>м</u> ат <u>С</u> ерв	ис Данные	<u>О</u> кно <u>3</u>	2					·		_ 8 ×	l g
A	rial Cyr	• 10	• ж.	КЦ		\$	%,	+,0 ,00 ,00 →,0	€≣ +	E .	- 👌 -	<u>A</u> -			fice
	A1	•	= alpha	1		_			1			_			
	A	B	С	D	E	F		G	Н			J	K		
1	alpha	SumQ St	umCa	SumCd	SumC	name									
2	34,95	0,93	2,65	-	2,65	benzo[;	a]pyren	е							
3	39,51	1,08	3,08	-	3,08	1,2:5,6	dibenza	anthrac	ene						Ē
4	32,24	🛐 CheD - [S	olid [6 o	ut of 881(a	ll)]]										
5	32,24	i Eile <u>E</u> dit	<u>S</u> earch	<u>V</u> iew <u>T</u> oo	ols <u>W</u> indow	<u>H</u> elp									
6	30,56				. 1										8
7	5,72			• <u>•</u> <u>A</u> do	1										
8	22,58	14 14 44 44	6	→ → ⊕ +) <u> </u>		1				- Eare	Default 💌	[
9	14,47			· • •		\square	<u>U</u> pdate						1		
10	27,30	10 🗄 🖆	N 🕹 Ta	able: 🔍 🎘	⊈ 1⁄2 ≩	× 💻	J	Zoom	100	20	00 <u>T</u> able	Default 💌			
11	19,75	Logical N. Ma	ark Brutto	-formula Mo	olecular weight	alpha	SumQ	SumCa	SumCd	SumC	name				- 12
13	19.68	0000006	► C H41	N2 0 60	.06	5.72	1.14	3.35	-5.14	8.49	urea	_			2
14	8,08	0000007	C6 H6	S CI6	IRPlus										∎∎
15	23,28					d le le e	5 70	C		57	C(C)	0.05	0.0.274		10
16	i 12,70	<u>⊨</u>			<u>S</u> tay on top	Alpha	0.72	Su	m(Q+) U.	97	sum(ca)	3.30	S(Q+J/A	0.100	
17	16,37	Default			Nou	max(Q-)	-0.20	Su	n(IQI) 1.	14	Sum(Cd)	-5.14	S(Ca)/A	0.586	F
18	20,04	Structure				max(Q+	-) 0.25	ma	x(Ca) <mark>2</mark> .	70	Sum(C)	8.49	S(Cd)/A	-0.899	
19	23,71				P. Print	C(D	0.57				C(C) 14	0.100	0(0)4	1.405	
20	12,97	H H N				Sum(ų∙	-J -0.57	ma	x(La) -1	.28	SĮŲ-J/A	-0.100	SĮUJ/A	1.480	
21	31,48	III2- \		H·	Factor Cl	harge	Polari	zability	· •	т кі					
22	33,40		\		0.2	25	1.35			¹ 2 ¹					Nic
23	1 33,40			0.3	2 -0.1	20	1.09			~ `					5
24	- 31,28 ▲ N N Mol			2.7	U -0.	16	0.64				\backslash				SO
				0.3	2 -U. 20 0.0	20	1.09								A.
10	1080		\ 	-1.2	20 0.0 28 0.0	18	0.39				}_				
1	Пуск 🛛 🧕 🧕	C 🔁 😂	🛛 🔟 Che	ed			0.00				/ _	J	_0		47

Raevsky, O.A., Grigor'ev, V.Ju., Trepalin, S.V. HYBOT (Hydrogen Bond hermodynamics) program package. *Registration by Russian State Patent Agency* N 990090 *of 26.02.99.*

💢 output (/usr/people/vad/output.sdf)

		×
--	--	---

File Edit Vie	w Info Graph	n Options QS	AR			
AutoFill	Pick Points	Show Row Sel	Select Rows	Select Cols	Show Info	
0 of 363	Rows	0 of 18 C	čolumns	No Analysis Present		
	3: Alpha	4: max'Ca'	5: max'Cd'	6: max'Q+'	7: max'Q-' 📩	
1: Cd-0000001	10.71	0.97	-2.50	0.11	-0.	
2: Cd-0000002	12.54	1.09	-2.27	0.11	-0. ~	
3: Cd-0000003	12.64	0.88	-2.18	0.11	-0.	
4: Cd-0000004	12.82	0.95	-1.17	0.11	-0.	
5: Cd-0000005	12.54	1.02	-2.40	0.11	-0.	
6: Cd-0000006	10.62	0.79	-2.81	0.21	- 0.	
7: Cd-0000007	12.64	12.64 0.66		0.12	- 0.	
8: Cd-0000008	13.33	0.70	-2.94	0.11	- 0.	
9: Cd-0000009	10.98	0.93	-2.56	0.13	– 0.	
10: Cd-0000010	12.26	0.69	-3.45	0.95	- 0.	
11: Cd-0000011	12.54	1.10	-2.45	0.11	<u></u>	

Raevsky, O.A., Skvortsov, V.S., Grigor'ev, V.Ju., Trepalin, S.V. HYBOT in UNIX/LINUX.*Registration by Russian State Patent Agency* N 2002610496 *of 05.02.02*.

Simple H-bond calcs - not as good for acceptors

Lipinski, C.A. Drugs Structure and Properties, Past and Present. Can We Design Drugs with Beautiful Properties? <u>http://www.iainm.demon.co.uk/spring99/lipins_n.pdf</u>

Correlation $\Sigma C_a / N_a$

O.A.Raevsky. In *Molecular Drug Properties. Measurement and Prediction.* R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

3D H-bonding Descriptors

Name or meaning	Symbol & Formule	Authors
Polar surface area	PSA, PSAd, TPSA	H.Van de Waterbeemd (1996) K.Palm (1997)
Optimum H-bond enthalpy for three types of complexes	Em(OHO),Em(OHN) Em(NHN)	P.Goodford (1989)
3D H-bond distance descriptors	HB+ +, HB, HB+ -	O.Raevsky (1987)
Similarity Indexes of Spectra of H-bond interactions	SIS+ +, SIS, SIS + -	O.Raevsky (1999)
Hydrogen bonding potential	МНВР	G.Caron (2001)

Molecular Drug Properties. Measurement and Prediction. R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

3D HYBOT Potentials Calculations

$$\Delta \mathbf{H} = \mathbf{k}_{1} (\mathbf{kcal/mol}) \mathbf{E}_{a} \mathbf{E}_{d} = \mathbf{E}_{m}$$
(1)
$$\mathbf{E}_{r} = \mathbf{C}/\mathbf{r}^{8} - \mathbf{D}/\mathbf{r}^{6} ,$$
(2)

where E_m is optimum H-bond enthalpy in kcal/mole; $C = -3E_m r^8 E^8/mol$; D = $-4E_m r_m {}^6E^6/mol$; r is the distance between the acceptor and the donor heavy atoms.

$$r_{m} = k' \log[(k'' - E_{m})/(E_{m})] + k_{0}$$
 (3)

Thus, for each specific pair of atoms participating in an H-bond, its H-bonding potential can be calculated on the basis of eqs. (1), (2) and (3).

O.A.Raevsky, V.S.Skvortsov, 3-D hydrogen bond thermodynamics (HYBOT) potentials in molecular modelling, *Journal Computer-Aided Molecular Design*, **16, N1, pp. 1-10 (2002).**

3D HYBOT (HYdrogen BOnd Thermodynamics) Potentials

O.A.Raevsky, V.S.Skvortsov, 3-D hydrogen bond thermodynamics (HYBOT) potentials in molecular modelling, *Journal Computer-Aided Molecular Design*, **16, N1, pp. 1-10 (2002).**

Hydrogen Bonds System in Fragment of Double Helix of RNA in A Form

O.A.Raevsky, V.S.Skvortsov, 3-D hydrogen bond thermodynamics (HYBOT) potentials in molecular modelling, *Journal Computer-Aided Molecular Design*, **16, N1, pp. 1-10 (2002).**

The Calculated Energy Values for Bases Interactions in Double Helix of RNA in A Model

Donor	Cd	Accep -tor	Ca	Em (this work) (kcal/ mol)	Em [21] (kcal/ mol)	Rm (this work)(A)	Rm [21] (A)	R (A)	Er (this work) (kcal/m ol)	Er (as in [21] (kcal/m ol)	Ehb(this work) kcal/mol)	Ehb(as [21]) (kcal/mol)
N(39)-H(56)	-1.83	N(11)	1.99	-4.84	-2.00	2.840	3.20	2.953	-4.69	-1.53	-4.64	-1.53
N(29)-H(51)	-1.83	N(20)	1.19	-2.90	-2.00	3.186	3.20	2.909	-2.01	-1.31	-1.96	-1.27
N(30)-H(52)	-1.29	O(21)	2.06	-3.53	-2.80	2.995	3.00	3.078	-3.48	-2.76	-2.81	-2.23
N(18)-H(48)	-1.29	O(27)	1.78	-3.06	-2.80	3.057	3.00	2.724	-1.35	-1.80	-1.20	-1.61
N(9)-H(43)	-1.29	O(37)	1.78	-3.06	-2.80	3.057	3.00	2.833	-2.45	-2.51	-2.18	-2.23
N(39)-H(56)	-1.83	N(11)	1.99	-4.84	-2.00	2.840	3.20	2.954	-4.69	-1.53	-4.63	-1.53
N(29)-H(51)	-1.83	N(20)	1.19	-2.90	-2.00	3.186	3.20	2.909	-2.01	-1.31	-1.96	-1.27
N(30)-H(52)	-1.29	O(21)	2.06	-3.53	-2.80	2.995	3.00	3.078	-3.48	-2.76	-2.81	-2.23
N(18)-H(48)	-1.29	O(27)	1.78	-3.06	-2.80	3.057	3.00	2.724	-1.35	-1.80	-1.20	-1.61
N(9)-H(43)	-1.29	O(37)	1.78	-3.06	-2.80	3.057	3.00	2.833	-2.45	-2.51	-2.18	-2.23
									ΣEr = -27.96	ΣEr = -19.82	ΣEhb = -25.55	ΣEhb= -17.73

O.A.Raevsky, V.S.Skvortsov, 3-D hydrogen bond thermodynamics (HYBOT) potentials in molecular modelling, *Journal Computer-Aided Molecular Design*, **16**, **N1**, **pp. 1-10 (2002)**.

3D H-bonding Descriptors

Name or meaning	Symbol & Formule
Van der Waal's acceptor surface area which is proportional to Ea	WEASA
Van der Waal's acceptor surface area which is proportional to Ca	WFEASA
Van der Waal's donor surface area which is proportional to Ed	WEDSA
Van der Waal's donor surface area which is proportional to Cd	WFEDSA
Surface area around a molecule where optimum enthalpy of interactions of acceptor atoms with H-bond donor probe is realized	OEASAprobe
Surface area around a molecule where optimum free energy of interactions of acceptor atoms with H-bond donor probe is realized	OFEASAprobe
Surface area around a molecule where optimum enthalpy of interactions of donor atoms with H-bond acceptor probe is realized	OEDSAprobe
Surface area around a molecule where optimum free energy of interactions of donor atoms with H-bond acceptor probe is realized	OFEDSAprobe
Sum of enthalpy values(kcal/m Å2) of interactions between the acceptor atoms in a molecule and donor probe on the surface OEASA	SIEAprobe
Sum of enthalpy values(kcal/m Å2) of interactions between the donor atoms in a molecule and an acceptor probe on the surface OEDSA	SIEDprobe

Raevsky, O.A., Skvortsov, V.S. Quantifying hydrogen bonding in QSAR and molecular modeling. *SAR & QSAR in Environmental Research,* **2005**, *12*, 1-14.

OFEASA (red) and OFEDSA (blue)

Raevsky, O.A., Skvortsov, V.S. Quantifying hydrogen bonding in QSAR and molecular modeling. *SAR & QSAR in Environmental Research,* **2005**, *12*, 1-14.

HYBOT Program Package

"Calculation of many different descriptors is possible using a range of commercially available software packages, such as Sybyl, Cerius2, Tsar, Malconn-Z, HYBOT etc."

H.Waterbeemd, D.S.Smith, K.Beaumont, D.K.Walker. *J. Med. Chem.*, **44**, 1313-1333 (2001)

"A further refinement in PSA approach is expected to come from taking into account the strength of the hydrogen bonds, which in principle already is the basis of the HYBOT approach"

H.Waterbeemd. Drug Bioaviability., Wiley-VCH, Weinheim, 3-20 (2003)

The Components of the «Critical Quartet» log K_{ow} Values Assessed by Four Commercial Software Packages

Partition coefficient (log Kow) values of 103 compounds in four different solventwater systems (alkane-water, octanol-water, chloroform-water and propylene glycol dipelargonate (PGDP)-water --- the «critical quartet») were published by Leahy et al. (1992). J. Chem. Soc., Perkin Trans., 2, pp. 723-731.

We have used ABSOLV and three other commercial software packages (HYBOT-PLUS, Molecular modeling Pro and QsarIS) that calculate descriptors of similar classes, to model partitioning in the four solvent-water systems.

Overall, HYBOT-PLUS gave the best results.

J.C.Dearden, D.Bentley. SAR QSAR Environ Res., **13** (1), pp. 185–197 (2002) Experemental solubility values measured by pSOL and the calculated values using the Abraham, Yalkovsky-Valvani and Raevsky descriptors

Newer drugs are less permeable

Lipinski, C.A. Drugs Structure and Properties, Past and Present. Can We Design Drugs with Beautiful Properties? http://www.iainm.demon.co.uk/spring99/lipins_n.pdf

Information Content and Relationships of H-bond Descriptors

O.A.Raevsky. In *Molecular Drug Properties. Measurement and Prediction.* R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

H-bond Descriptors in QSAR

log P Calculation

$$\begin{split} &\log \mathsf{P} = 0.267\alpha - 1.00 \ \Sigma \mathsf{C}_{\mathsf{a}} \\ & (\mathsf{N} = 2850, \, \mathsf{R} = 0.970, \, \mathsf{S} = 0.23) \\ &\log \mathsf{P}_{\mathsf{i}(\mathsf{calc})} = \log \mathsf{P}_{\mathsf{nn}} + 0.267(\alpha_{\mathsf{i}} - \alpha_{\mathsf{nn}}) - 1.00(\Sigma \mathsf{C}_{\mathsf{ai}} - \Sigma \mathsf{C}_{\mathsf{nn}}) \\ & (\mathsf{N} = 10937, \, \mathsf{R} = 0.971, \, \mathsf{S} = 0.26) \end{split}$$

O.A.Raevsky, S.V.Trepalin, E.P.Trepalina, V.A.Gerasimenko. Chem. Inf. And comput. Sci., 2002, v. 42, pp. 540-549.

Chemicals Distribution in Water-Air System

 $log L^{w} = Log L^{w}_{nn} - 0.032(\alpha_{i} - \alpha_{nn}) + 1.63(\Sigma Ca_{i} - \Sigma Ca_{nn}) - 1.04(\Sigma Cd_{i} - \Sigma Cd_{nn})$ $Log L^{w}_{exp} = 1.00(\pm 0.01)*log L^{w}_{fdn} (n = 558, r^{2} = 0.962, s = 0.40).$

O.A.Raevsky, K.J.Schaper. QSAR & Comb. Sci., 22, p. 926-942, 2003

Water Solubility of Liquid Pollutants

 $log S = 0.578 - 0.305\alpha + 1.155\Sigma Ca$ (n = 630, r² = 0.876, s = 0.586)

 $log S = 0.434 - 0.298\alpha + 1.090\Sigma Ca + 0.304 |\Sigma Cd|$ (n = 630, r² = 0.897, s = 0.536)

 $log S = 0.523 - 0.274\alpha + 0.882\Sigma Ca +$ + 0.318|SCd| + 6 I(n = 787, r² = 0.935, s = 0.47)

 $log S_{i} = Log S_{nn} - 0.275(\alpha_{i} - \alpha_{nn}) + 0.90(\Sigma Ca_{i} - \Sigma Ca_{nn}) + 0.33(|\Sigma Cd|_{i} - |\Sigma Cd|_{nn})$ Log S_{exp} = 0.98(±0.01)*log S_{fdn} (n = 786, r² = 0.970, s = 0.32).

K.J.Schaper, B.Kunz, O.A.Raevsky. QSAR & Comb. Sci., 22, p. 943-958, 2003

Chemicals Partitioning and Solubility

 $log P_{ow} = 0.267\alpha - 1.00 \Sigma C_{a}$ (N = 2850, R = 0.970, S = 0.23)

 $log K_{air/w} = 0.032\alpha - 1.63\Sigma C_a + 1.04\Sigma C_d$ (N = 322, R = 0.954, S = 0.65)

 $log K_{air/o} = -0.258\alpha - 0.43\Sigma C_a + 0.73\Sigma C_d$ (N = 98, R = 0.928, S = 0.61)

 $\frac{\log S_{o} = 1.06 - 0.063\alpha + 0.03\Sigma C_{a} - 0.14\Sigma C_{d}}{(n = 23, R = 0.957, S = 0.16)}$

 $\log S_{w} = 0.434 - 0.298\alpha + 1.090\Sigma C_{a} - 0.304\Sigma C_{d}$ (n = 630, r2 = 0.897, s = 0.536)

 $logC_{air} = 0.36 - 0.257\alpha - 0.33\Sigma C_{a} + 0.78\Sigma C_{d}$ (n = 90, R = 0.951, S = 0.40, F = 272.4

O.A.Raevsky, K.-J.Schaper, O.E.Raevskaya. QSAR & Comb. Sci., SAR & QSAR in Environ. Res., 2002-2007

O.A.Raevsky, K.-J.Schaper. QSAR & Comb. Sci., 2007 (in press)

Parameters and Statistics of Equation log P = $a_0 + a_1\alpha + a_2\sum Q + a_3\sum Ca + a_4\sum Cd$

$\mathbf{P} = \mathbf{a}_0 + \mathbf{a}_1 \alpha + \mathbf{a}_2 \sum \mathbf{Q} + \mathbf{a}_3 \sum \mathbf{C} \mathbf{a} + \mathbf{a}_4 \sum \mathbf{C} \mathbf{d}$											
System	a ₀	a ₁	a ₂	a ₃	a ₄	n	R ²	R _g ²	R	SD	F
Hexadecane- water	-0.05	0.298	-0.69	-1.56	0.58	372	0.923	0.922	0.961	0.60	1098.9
Octanol-water	0.30	0.244	-0.72	-1.13	0.04	560	0.959	0.959	0.979	0.32	1279.8
Bu ₂ O-water	0.10	0.310	-0.72	-1.49	0.18)	101	0.932	0.929	0.966	0.43	330.2
PGDP-water	0.63	0.243	-0.36	-1.27	0.14	52	0.898	0.889	0.947	0.32	102.9
air-water	0.35	-0.034	-2.24	-1.91	0.83	432	0.881	0.880	0.938	0.77	784.6
Hexadecane-air	-0.40	0.325	1.43	0.37	-0.20	390	0.935	0.934	0.967	0.38	1373.7
Octanol-air	-0.23	0.298	1.27	0.64	-0.83	407	0.876	0.875	0.936	0.73	711.6
Bu ₂ O-air	0.37	0.298	0.91	0.20	-0.83	91	0.892	0.887	0.944	0.75	177.1
PGDP-air	-0.16	0.317	0.09	0.17	-0.96	32	0.799	0.769	0.894	0.63	26.8

O.A.Raevsky. O.E.Raevskaya. SAR & QSAR in Environ. Res., (submitted)

PERMEABILITY

PARTITION OF PHENOLS IN LECITHIN LIPOSOME/WATER SYSTEM

O.A.Raevsky (unpublished data)

 $log Per = 0.86(\pm 1.13) + 0.126(\pm 0.071)\alpha$ N = 26, R = 0.598, SD = 0.52, F = 13.3

log Per = $1.32(\pm 0.51) + 0.158(\pm 0.032)\alpha - 0.68(\pm 0.14)\Sigma C_a$ N = 26, R = 0.939, SD = 0.23, F = 85.4

 $log Per = 0.78(\pm 0.79) + 0.171(\pm 0.034)\alpha - 0.69(\pm 0.13)\Sigma C_{a} - 0.15(\pm 0.18)\Sigma C_{d}$ N = 26, R = 0.947, SD = 0.22, F = 63.3

 $log Per = 2.04(\pm 0.59) + 0.160(\pm 0.026)\alpha - 0.74(\pm 0.12)\Sigma C_{a} - 0.07(\pm 0.04)pK_{a}$ N = 26, R = 0.962, SD = 0.18, F = 90.3

$$log Per = 1.50(\pm 0.72) + 0.173(\pm 0.026)\alpha - 0.75(\pm 0.11)\Sigma C_{a} - 0.15(\pm 0.14)\Sigma C_{d} - 0.07(\pm 0.04)pK_{a}$$

N = 26, R = 0.970, SD = 0.17, F = 82.6

Biological data are taken from H.Miyoshi, T.Nishioka, T.Fujita, Bull. Chem. Soc. Jpn., v.59, 1099–1107 (1986)

Caco-2 Permeability for 13 Compounds

Oral Absorption in Human for 13 Compounds

Per $(10^6) = 27.37/(1+10^{-[4.52-0.33 \text{ SumC}]})$ N=13, R=0.97, S=3.07, F=77.9

Per (10⁶)=27.34/(1+10^{-[4.47-0.34 SumCa+0.32 SumCd]}) N=13, R=0.97, F=48.0 FA=1/(1+10^{-[4.79-0.29 SumC]}) N=13, R=0.88, S=0.15, F=37.6

FA=1/(1+10^{-[6.25-0.44 SumCa+0.32 SumCd]}) N=13, R=0.98, S=0.06, F=1269

O.A.Raevsky (unpublished data, 1992)

Absorption in Human for 31 Passively Transported Drugs $FA = 1/(1 + 10^{-[5,02-0,31\SigmaCad}])$ n = 31, r² = 0.89, s = 0.12

 $FA = 1/(1 + 10^{-[5,05-0,36\Sigma Ca+0,26\Sigma Cd}])$ n = 31, r² = 0.95, s = 0.09

Raevsky, O.A., Fetisov, V.I., Trepalina, E.P., McFarland, J.W., Schaper, K.-J. Quantitative Estimation of Drug Absorption in Human for Passively transpoetred Compounds on the Basis of Their Physico-chemical Parameters. *Quant. Struct.-Act.Relat.*, **2000**, *19*, 366-374.

H-Bond Descriptors Contributions in Fraction Absorption (FA) in Human

Absorption in Human for 154 Passively Transported Drugs

 $FA = 1/(1 + 10^{-[2,2 - 0,016 (OFEASA+OFEDSA})])$ n = 154, r2 = 0.83, s = 0.15

Raevsky, O.A., Skvortsov, V.S. Quantifying hydrogen bonding in QSAR and molecular modeling.*SAR & QSAR in Environmental Research*, **2005**, *3*, 287-300.

Correlation of Permeability and Total Hydrogen Bonding Capacity (C_{ad})

H. van de Waterbeemd, G. Camenisch,
G. Folkers, **O. Raevsky.**Estimation of Caco-2 Cell Permeability
using Calculated Molecular Descriptors. *Quant. Struct.-Act. Relat.*, **15**,
480–490 (1996)

BBB+/BBB-Classification

The influence of physicochemical properties, including lipophilicity, H-bonding capacity and molecular size and shape descriptors on brain uptake has been investigated using a selection of 45 known CNS-active and 80 CNSinactive drugs. A combination of a H-bonding and a molecular size descriptor, i.e., the major components of lipophilicity and permeability, avoiding knowledge of distribution coefficients, is proposed to estimate the blood-brain barrier penetration potential of new drug candidates

Van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J.R., Raevsky, O.A. Estimation of Blood-Brain Barrier Crossing of Drugs Using Molecular Size and Shape, and H-Bonding Descriptors. *J. Drug Targeting*, **1998**, *6*, 151-165.

Chemicals BBB⁺/BBB⁻ Classification on the Basis of LDA

		Descriptor	Classificat (right/wror	ion 1g)	Recognition(%)			
			BBB-	BBB+	BBB-	BBB+	Total	
		MW	206/104	254/56	66.5	81.9	74.2	
		Sumq-	184/126	270/40	59.4	87.1	73.2	
		SumCad(o)	223/87	302/8	71.9	97.4	84.7	
		PSA	218/92	284/26	70.3	91.6	81.0	
		WFEASA	241/69	293/17	77.7	94.5	86.1	
		(WFEASA(o)+WFEDSA)	238/72	302/8	76.8	97.4	87.1	
		(NHD+NHA)	224/86	297/13	72.3	95.8	84.0	
		logP _{ow}	207/103	231/79	66.8	74.5	70.6	
		logD	207/103	271/39	66.8	87.4	77.1	

O.Raevsky, V.Grigoriev, V.Skvortsov, R.Mannhold. Unpublished recent results

Chemicals BBB⁺/BBB⁻ Structure Classification on the Basis of Binary Approach

	Chemicals	1 nearest neighbour (max cosine)				
	Number	BBB-	BBB+			
	310	279	31			
		90.0%	10.0%			
	310	24	286			
		7.7%	92.3%			
Total	620	Right ro	ecognition to 91.1%			

O.Raevsky, V.Grigoriev, V.Skvortsov, R.Mannhold. Unpublished recent results

Chemicals BBB+/BBB- Classification on the Basis of Structure and Physicochemical Similarity

МОА	Chemicals Number	WFEASA+WFEDSA neighbour	
		BBB-	BBB+
BBB-	310	285	25
		91.1%	8.9%
BBB ⁺	310	17	293
		94.5%	93.2%
Total	620	Right recognition 93.2%	

O.Raevsky, V.Grigoriev, V.Skvortsov, R.Mannhold. Unpublished recent results

BBB+Probability as a Function of WFEASA+WFEDSA H-bond Descriptor

WFEASA+WREDSA (Å²)

O.Raevsky, V.Grigoriev, V.Skvortsov, R.Mannhold. Unpublished recent results

WFEASA- WFEDSA	Chemical number	BBB ⁺	BBB-
0.00-18.10	310	265 (85.5%)	45 (14.5%)
>18.10	310	45 (14.5%)	265 (85.5%)
Total	620	310	310

SLIPPER-2000. Results of Properties Prediction (Monitor View)

O.A.Raevsky, S.V.Trepalin, E.P.Trepalina, V.A.Gerasimenko. Chem. Inf. And comput. Sci., 2002, v. 42, pp. 540-549.

О.А.Раевский. Росс. Хим. Журн., 50 (2). С. 97-107, 2006

Biopharmaceutics Classification (BPC)

BPC	Solubility	FA	α/Σса	ΣC_{ad}
class 1	≥50 µg/mL	≥0.50	≤ 2.0	<15.0
class 2	<50 µg/mL	≥0.50	>2.0	<15.0
class 3	≥50 µg/mL	<0.50	≤ 2.0	≥15.0
class 4	<50 μg/mL	<0.50	>2.0	≥15.0
«alert»	<5 µg/mL	<0.05	>5.0	>25.0

Strong H-bond complexes in crystal lattice can move drug from class 1 to class 2 or from class 3 to class 4.

Active transport can move drug from class 4 to class 2 or from class 3 to class 1.

O.A.Raevsky. In *Molecular Drug Properties. Measurement and Prediction*. R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

Biopharmaceutics Classification for 254 Drugs

class		1	2	3	4
number		156	74	17	7
%		61.4	29.1	6.7	2.8
right	S(N/%)	115 (73.7)	61 (83.4)	16 (94.1)	5(74.1)
recog- nition	FA(N/%)	135 (86.5)	69(93.2)	13 (76.5)	3 (42.9)

Total right recognition ~75%

O.A.Raevsky. In *Molecular Drug Properties. Measurement and Prediction*. R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

Aquatic Toxicity (Subject: *Poecilia reticulata* (guppy))

Inert chemicals; non polar narcosis Classical QSAR

 $log LC_{50} = 5.14 - 0.258 \alpha + 0.77 \sum Ca - 0.02 \sum Cd$ n = 90 R = 0.976 s = 0.32

Less inert chemicals; polar narcosis

 $\begin{array}{l} \log \, LC_{50} = 4.14 - 0.200 \; \alpha + 0.69 \; \Sigma Ca + 0.11 \; \Sigma Cd \\ n = 121 \quad R = 0.931 \; \; s = 0.37 \end{array}$

Reactive chemicals

 $\begin{array}{l} \log LC_{50} = 2.44 - 0.120 \ \alpha + 0.29 \ \Sigma Ca - 0.11 \ \Sigma Cd \\ n = 51 \ R = 0.663 \ s = 0.70 \end{array}$

Specifically acting compounds

 $log LC_{50} = 2.57 - 0.120 \alpha + 0.11 \sum Ca - 0.05 \sum Cd$ n = 31 R = 0.772 s = 0.90

GENERAL MODEL

 $log LC_{50} = log LC_{50}nn - 0.(207 \alpha_{I} - \alpha_{nn}) + 0.44 (\Sigma Ca_{i} - \Sigma Ca_{nn}) - 0.06 (\Sigma Cd_{i} - \Sigma C)d_{nn})$ log LC_{50} = 4.25 - 0.207 \alpha + 0.44 \Sigma Ca - 0.06 \Sigma Cd n = 293 R = 0.800 s = 0.86 LC_{50} (exp) = 1.00 log LC_{50} (3nn) n = 293 R = 0.973 s = 0.33

O.A.Raevsky and J.C.Dearden, Creation of Predictive Models of Aquatic Toxicity of Environmental Pollutants with Different Mechanisms of Action on the Basis of Molecular Similarity and HYBOT Descriptors, SAR & QSAR in Environmental Research, 2004, **15**, 433-448.

Similarity + QSAR

 $\log LC_{50}(exp) = 1.02 \log LC_{50}(3nn)$ n = 90 R = 0.987 s = 0.23

 $log LC_{50} (exp) = 1.01 log LC_{50} (3nn)$ n = 121 R = 0.974 s = 0.23

 $log LC_{50} (exp) = 0.94 log LC_{50} (3nn)$ n = 51 R = 0.934 s = 0.32

 $\log LC_{50}(exp) = 0.84 \log LC_{50}(3nn)$ n = 31 R = 0.861 s = 0.68

Relationships of Nonpolar Narcosis with Molecular Polarizability and H-Bond Factors

Guppy log(1/LC50) = -2.09 (±0.11) + 0.26 (±0.01) α - 0.81 (±0.03) ΣC_a N = 90, R = 0.978, S = 0.31, F = 938

Fathead minnow

 $log(1/LC50) = -1.92 (\pm 0.13) + 0.26 (\pm 0.01) \alpha - 0.93(\pm 0.05) \Sigma C_a$ N = 66, R = 0.965, S = 0.32, F = 425

Rainbow trout

 $\begin{array}{l} \mbox{log}(1/LC50) = -1.75(\pm 0.27) + 0.26(\pm 0.02) \ \alpha - 0.93(\pm 0.07) \ \Sigma C_a \\ \mbox{N = 28; R = 0.971; S = 0.39; F = 203} \end{array}$

Total (Guppy + Fathead minnow + Rainbow trout) $log(1/LC_{50}) = -1.94(0.09) + 0.26(0.01) \alpha - 0.87(0.02)\Sigma C_a$ N = 184; R = 0.970; S = 0.34; F = 1422

O.A.Raevsky, V.D.Tonkopii, J.C.Dearden, E.Weber. Aquatic Toxicity QSPR models. Abstracts of the 12th International Workshop on Quantitative Structure-Activity Relationship in Environmental Toxicology (Lyon, 8-12 May, 2006). P. 114

Recent progress in H-Bonding Parametrization in Quantitative Structure–Activity Relationships and Drug Design

- Structure of liquid water,
- New X-ray data for specific H-bonding complexes,
- Quantitative estimation of contribution of H-bond acceptor and donor factors and volume-related terms in chemicals solvation processes, partitioning in water/solvent/air systems,
- A refinement in the PSA approach,
- Improvement of Grid potentials,
- Calculation schemes of optimum H-bonding potential values for any concrete H-bonding atoms in any complexes which consider the nature of interacting atoms and the influence of substituents.

O.A.Raevsky. In *Molecular Drug Properties. Measurement and Prediction*. R.Mannhold (Ed.) Copyright © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4, pp. 127-154

Acknowledgements

This investigation was supported by the International Science & Technology Centre (Project # 888) and the Russian Ministry of Education & Sciences (contract N 02.434.11.1014).

Co-authors and co-workers:

V.Yu.Grigoriev, S.V.Trepalin, V.A.Gerasimenko, O.E.Raevskaya, E.V.Bovina, V.S.Skvortsov, E.Andreeva, A.N.Rasdolsky.